Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits.

نویسندگان

  • T Kushikata
  • T Kubota
  • J Fang
  • J M Krueger
چکیده

Various growth factors (e.g., growth hormone-releasing hormone, acidic fibroblast growth factor, nerve growth factor, brain-derived neurotrophic factor, and interleukin-1) are implicated in sleep regulation. It is hypothesized that neuronal activity enhances the production of such growth factors, and they in turn form part of the sleep regulatory mechanism. Glial cell line-derived neurotrophic factor (GDNF) promotes development, differentiation, maintenance, and regeneration of neurons, and its production is induced by well-characterized sleep regulatory substances such as interleukin-1 and tumor necrosis factor. Therefore, we investigated whether GDNF would promote sleep. Twenty-six male Sprague-Dawley rats and 30 male New Zealand White rabbits were surgically implanted with electroencephalogram (EEG) and electromyogram (EMG; rats only) electrodes, a brain thermistor, and a lateral intracerebroventricular cannula. The animals were injected intracerebroventricularly with pyrogen-free saline and on a separate day with one of the following doses of GDNF: 5, 50, and 500 ng in rabbits and 50 and 500 ng in rats. The EEG, brain temperature, EMG (in rats), and motor activity (in rabbits) were recorded for 23 h after the intracerebroventricular injection. GDNF (500-ng dose) increased the time spent in nonrapid eye movement sleep in both rats and rabbits. Rapid eye movement sleep was not affected by the lower doses of GDNF but was inhibited in rabbits after the high dose. EEG slow-wave activity was not affected by GDNF. The current results provide further evidence that various growth factors are involved in sleep regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, microtubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, ne...

متن کامل

The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury

Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...

متن کامل

Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ

Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...

متن کامل

Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats.

BACKGROUND AND PURPOSE Stroke triggers increased progenitor proliferation in the subventricular zone (SVZ) and the generation of medium spiny neurons in the damaged striatum of rodents. We explored whether intrastriatal infusion of glial cell line-derived neurotrophic factor (GDNF) promotes neurogenesis after stroke. METHODS Adult rats were subjected to 2-hour middle cerebral artery occlusion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 2001